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CO-. laser multiple-photon dissocrntion (MPD) of CDFI is ewrnincd as a function tif tluencc and collisions, providing nea 
undersranding of JIPD. Notably. the dissociation yield is increased IOO-foId due ro collisions with argon. PhotochemiaIly, 

_ this molecule is ideally suiicd for dcuterium separation. 

1. Introduction 

Outstanding questions remain concerning the kinet- 
ics of the rnukiple-photon absorption (MPA) process 
which contributes to collision-free and collision-assisted 
muMpIe-photon dissociation @lPD). This letter reports 
an esperimental study of CO, laser MPD in deuterated 
trifltioromethane_ CDF, (fluoroform-d), in which some 
of these questions are addressed. Specifically. the MPD 
of fIuoroform has been studied as a function of laser 
fluence as well as of collision partner and pressure. These 
results shed additional understanding on the MPA pro- 
cess_ In addition, because of the isotopically-selective 
dissociation of CDF,, trifluoromethane is found to be 
nearly ideal from a photochemical viewpoint for viable 
large-scale deuterium separation_ 

The infrared absorption spectrum of CDF; [l] is 
shown in fig_ 1; it e?ihibits strong_ selective peaks at 
10.21 p and 10.3 1 ~1, corresponding to the P and R 
branch peaks of the v5 mode (C-D wag). The low in- 
tensity, low resolution absorption coefficient at 102 p 
is 1.0 X 1O-2/cm Torr at room temperature and the 
isotopic optical selectivity, based on the ratio of CDF, 
to CHF, absorption coefficients. is > 2000 from IO?-- 
10.3 p_ (Note that in fig. 1 the CHF3 pressure is one 
hundred times the CDF3 pressure_) 

The primary step in thermal decomposition of CHF, 

* Work performed under the auspices of the U.S. Depxtment 
of Energy by the Lawrence Lib ermore Laboratory under 
contract number W-7405ENG-48. 
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rig. 1. Lou intensity, ION resolution infmred spectrum of 
fluoroform nex 10 or_ Upper tracer 875 Torr CHF3 in 11 em 
long cell. Lower trace: 9 Torr CDF3 in 1 I cm cell. 

is: CHF, -+ : CF, + HF (I?,,, = 69 .O z 1.6 kcsl/mole), 
followed by : CF2 recombination to form C2F4 [2] _ An 

analogous mechanism is expected in the MPD of CDF; _ 

2_ Experimental procedure 

The output from a commercial TEA CO, laser (5 J, 
0.5 Hz, YG ns fwhm pulses with = 500 ns tail, 20-700 
pulses) was focused into a 3.5 cm I.d. cell wth KC1 win- 
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dews, whi& contaSted the d&red mixture of trifIuorrt- 
methiane and other gases_ To achieves fot2.G Duences of 

G 30 J/cm’, the Iaser was focused into the center of 3 

60 cm long cell by a 100 cm fJ!_ BaF, Iens: for 30-180 
J/cm2 f’lucnces, a 30 cm long ceil and 3 40 cm f-Q_ Iens 
were employed_ The incident laser fluence was varied 
by inserting suitztbfe attenuztting flats after tfre Iaser- 

After irradiation the Products were transferred by 
cryogenic condensation from the cell to another, srnzdk 

volume from which 3. sample was extracted with a syringe 
for gas chromatographic analysis_ A Pomp& T column 
(60°C) ckmly separated the main carbon-bearing prad- 
wt, C2Fa, from CDF3, The &me ionization detector 
sensitivity to CIF, wzr measured to be 794 a O_gO 
times its sensitivity to fluoroform. 

CDF3 wils obtained from Merck Ltd_ (2 98% I31 and 
was used without any further purification, aside from 
pumping away any voIatiIes remaining at 77 IS. It con- 
tagned aa X I% C,F, impurity which caufd not he re- 
moved by distW&n without significant fuss of CDF, 
fCHF, b-p_ = -82_lQC; C,F, b-p_ = -4YGaC) f3J - 

Since G2Fk was the expected carbon-containing product. 
this approximately 1% C2F, background contribution 
was subtracted from the total amount appearing in the 
iaser-irradiated samples of CDF3_ CHF3@Mheson, 
3 98-O%) wzr found to contain s O_Oi% C,F, and was 
used without further putifIcattnn, as wrs the argon 
(AIrco,99_998%). A reference sample of C,F, was 
obtained by low pressure thermal decomposition of 
tefIon chips- 

The only main carbon-containing product obsW&Xl 

in IR photolysis of CDF, was C, Fa. Under certain 
conditions other products were ?ormed, but their yield 
was at~ra_~s < 5% times that of the C2F4 Product- The 
product yield at high fluerace (150 J/a&; 75 mTorr 

CDF,) wss insensitive to the CO, Iastr line employed 
between lO_2 and 10.3 p, the v5 P and R branch peaks, 

Unless otherwise specified below, the lru;er was tuned 
to LO.2 fl [R(X) f R(28)], the CDF, P branch peak, 
in all the expetiments described_ 

‘fhe dependence of CDFz decompositiurt on Iaser 
luence for {near-) colhsion-free conditions (66 mTorr) 
is indicated by the lower curve in fig_ 2.. The mechanism 

proposed by PcIitanskii and Shevchuk [2 J was employed 

to relsk the amount of C3F4 produced to the amount 
of the reagent decomposed_ The fraction of reagent 
which dissociated per pulse was nomtaIized by dividing 
by the vohtme of molecules within the Rayleigh range 
of the focus, i-e_, the volume in which the fluence ex- 
ceeded half the peak focal fhtence: this is hereafter 
referred to as the yield. 

The effect on the dissociation yiefd of CDFS at 15 
J/cm2 ffuence due to sdding varying pressures of an 
argon buffer gas to a fixed partial pressure of CDF3 
(65 mTorr) is shown in fig_ 3, In the range of Q---f0 

Tori pressure of added argon, the yield increases Iinear- 
1y from the value of 2% in pure CDF3, saturates near 
100% with approximately 15---SO Torr of argon, and 
then decreases zr_t higher pressure_ Therefore t&e addi 
tion of about 20 Torr argon increases the yield by a 
factor of 50 at a ffuence of 25 J/c&_ At lower fluences 
(e 10 .I/cmz) this increase Is .ZOO-foid, as is seen in fig_ _ 

Fig- 3. Depcndcnce of yield of MPD in CDFs 165 n%Tarr) as a 
furlclion of added argon pressure (10 2 p. 25 J/c&. 



4. EquaIIy large yieId enhancements with added argon 
have also been observed with the Iaser tuned to the R 
branch peak [lo.3 P, R(lO) f R(12)] _ Use of the other 
inert gases as buffers should lead to qualitatively the 
same resuIts [4] _ 

Reference to fig_ 2 shows that the fl uence dependence 
of the dissociation probabihty of CDF, is very different 
for a neat, collision-free sample of CDF, compared to 
one with 20 Torr of argon added. This latter decompo- 
sition probability (upper curve, fig. 2) increases rapidly 
with fluence near 15 J/cm7 and saturates near 100% 
above 30 J/cm’_ Since at high fluence levels the effec- 
tive dissociation volume far exceeded the Rayleigh 
range volume, these data were normalized by use of 
either rhe focal volume in which the incident II uence 
was 2 12.6 J/cm” or the Rayleigb range volume, which- 
ever was larger_ This specified fluence cut-off corre- 
sponds to a 20% dissociation probability; the exhibited 
results are insensitive to the exact choice of this cut-off- 
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Fig_ 4. FIucna dependence of fractional CDF, dlssociatron 
for various pressures of added arson (65 mTorr CDFs, 10-Z p)_ 

Still, at high fluences this normalization procedure is 
only approximate. 

The detailed fluence dependence of argon collision- 
assisted MPD in CDF, was investigated and the results 
are exhibited in fig. 4, in which a famiIy of yield versus 
fluence curves for various argon buffer gas pressures is 
plotted. Since each pair of curves in this plot are parsI- 
lel in regions where saturation is unimportant, the ad- 
dition of a fixed partial pressure of argon simply in- 
creases the fraction of dissociating molecules by a con- 
stant factor. Each curve exhibits a yield which is pro- 
portional to fluence to the 3.0 t 0.5 power in regimes 
where saturation plays no role. 

Of particular interest from the viewpoint of deuter- 
ium separation is the effect of cohisions with CHF, _ 
This is shown in fig. 5 under conditions otherwise simr- 
Iar to those in fig. 3. It is assumed that CHF, does not 
undergo MPD itself to form C7FJ; this is subgtantiated 
beIow. With small amounts ofadded CHF,; the yield 
increases linearly with CHF, pressure, at approximately 
the same slope as with Ar, indicated in fig. 3. However, 
in this case the yieId peaks at 4.6% with = f Torr CHF3 
[corresponding to 250 ns between hard sphere CHF; - 
CDF, collisions [S] ), and rapidly decreases at higher 
pressure_ 

The possibility of MPD of CHF; was then studied 
using CO2 laser puIses with 170 J/cm’ fluence @ = 
10.2 p) incident on 65 mTorr of neat CHF, _ Only one 
dominant, though quite small, product peak appeared 
in the gas chromatographic analysis of the laser-irradiated 
sample and it had a retentron time almost, though not 
exactly, equal to that of C,F4; however, in mass spec- 
trometric analysis no C1F4-was observed. Addition of 

1 
; 

1 
0 1 3 4 

CHF3 pressure (Torr) 

Fig_ 5 Dependence of yieId of CDF3 dissociation in presence 
of CHF3 (62 mTorr CDF3. 10 2 p, 27 J/cm*). 
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-several hundred mTorr more CHF; or, altemativeIy. 
20 Torr of aro,on decreased the observed yield_ The yield 
monotonicahy increased with laser fhrence but was in- 
sensitive to the wavelength of the laser line chosen and 
whether or not it was on or off either a CDF, or CHF, 
resonance_ EvidentIy, the unidentified product was due 

to heterogeneous reactions_ Assuming the caIibration 

for C,F4relative to CHF,, the normalized yield per 
pulse for this product was = 6 X 10M3% for 65 mTorr 
CHF5 in 20 Torr of argon (30 J/cm7: X = 10.2 p 
[R(26) + R(28)]). or 2 X IO4 times smaller than for 
C,F4 produced from CDF, under simi!ar conditions. 

4_ Discussion 

4_1_ Kinetics of the multiple-photon process 

Since tetrafluoroethene is the dominant product in 
CDF, IR photolysis, DF elimination is most probably 
the initizd chemical step_ followed by I CF-, recombina- 

tion 

CDF3 + rzlzv + rCF, i- DF, (1) 

:CF? + :CFI -+ C,F4. 

A third possrble step in the mechanism [6] : 

(2) 

rCF, f CHF3 + HF + C,F4 (3) 

was proven to be unimportrrnt by Politanskii and 
Shevchuk [2] _ who showed that added rCF, does not 
acceI+rate fluoroform thermal decomposition. Since 
the yieid versus fluence curves of fig. 4 are proportional 
to one another, and since collisions incrertse the yieId, 
it may be concluded that rotational relaxation of ground 
state molecules is the principal effect of CDF3-Ar col- 
lisions in MPA and MPD- After collisional rotational 
transfer, molecules which formerly were not resonant 
with the laser can then absorb photons and undergo 
blPD_ The decrese in yie!d for pAr > 100 Torr shown 
in fig. 3 can be attributed to V-T relaxation of vibra- 
tionally excited CDF, in the “quasi-continuum” with 

internal energ)i near the dissociation energy. Conceiv- 
ably, collisions may also enhance MPD by promoting 
V-V intr~molecuInr transfer; this wouId then enable 
moderately excited moiecules to absorb more photons, 
and would rdso allow a mokcule excited above the dis- 
sociation barrier to transfer to dissociating vibrational 
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Ievels_ The plot of the yield with no added gas in fig. 4 
would fall much faster with decreasing fiuence than 

would the other curves if these MPA and MPD rota- 
tiona1 IeveI bottleneck-removing collisions were not the 
dominant collisional infhxence on MPD in CDF3. Equiva- 
Iently, the ffuence threshold for MPD wouId then ap- 
pear to decrease with increased buffer gas pressure_ 
Evidently, this is not true in CDF3, which has a thresh- 
old (as defined in ref. 171) independent of buffer 
pressure. Quick and Wittig [7] have made similar ob- 
servations for MPD of C,H?F, and have also attributed 
the increse in dissociation yield with added buffer (He) 
to rotational reIa?cation_ 

These observations can shed new light on the muiti- 
ple-photon absorption process_ Kolodner et al. [S] and 
Lyman et al_ 19) showed thst as the CO? laser pulse 
width decreased from 100 to % 1 ns, with fluence held 
constant, the MPD rate in SF6 increased by only a smail 
amount (z lo-30%). It has been conventional wisdom 
since these experiments were performed, that it is the 
fluence of the laser pulse, and not the peak Intensity, 
that is the determining factor in hlPD_ However, the re- 
lative importance of fluence and intensity in fact spe- 
chically depend on the details of examined molecule, 
such as: (a) the complexity of ground-state rotstional 
structure:(b) the V = 1 +- 0 absorption coefficient; (c) 
the interns1 energy onset of the quasi-continuum:(d) 
the effective absorption coefficient in the quasicon- 
tinuum, etc_ 

In experiments with sufficient buffer gas_ 100% of 
al1 CDF, molecules residing in the Iaser focus decom- 
pose when subjected to an incident laser fluence of 30 
Jfcm’; whereas, wIthout added beneficird buffer gas, 
onIy 2% dissociate_ Approximately 180 J/I_& fluence 
is required for 100% yield in collision-free MPD of 
CDF3 _ Since at lower ff uences the dominant effect of 
CDF3-Ar collisions appears to be ground-state rota- 
tional relaxation, apparently a fluence of 30 J/cm2 is 
sufficient to permit absorption of the = 30 photons 
required for hIPD once the molecule is in thequasi- 
continuum_ Without the assistance of collisions, a much 
higher fluence (180 J/cm’) is required (with the same 
pulse shape)_ Evidently, the higher fluence laser pulse 
is required to allow all molecules, initially in any rota- 
tional state, to undergo hlPD_ It is most likeiy the in- 
crease in laser intensity, rather than the accompanying 
increase in fluence, that is responsible for reinoving this 
ground-state-rotational level “bottleneck”_ 
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Though smaller than in CDF, , noticeable enhance- 
ment in MPD due to added inert gas has been observed 
in other moIecuIesr methyl acetylenedI (== 15foId- 
enhancement in isomerization to alIenedI) [IO], 

CF,HCI (= 10) [I I], H,C-CHF, (= 2) [‘ii], C,H,F 
(z 3-6) [7], H2C=CF7 (z 5) [73 ~ and SF, (= 5 in 
absorption at 1 mJ/cmS fluence, no enhancement at 
1 J/cm?) [4] _ In addition, Quick and Wittig [7] ob- 
served a fluence-dependent decrease in the enhancement 
of MPD in C2H3F due to the addition of 11 Torr He, 
from 6.5 to 3ZfoId as the fl uence was increased from 
3 to 45 J/cm?, though the absolute yield, with and 
without added buffer, increased with fluence. Perhaps 
this increase in fluence partially removed the ground- 
state-rotationaI level bottleneck, in addition to increas- 
ing photon absorption for molecules already in the 
quasi-continuum_ 

It may be concluded that in molecules such as CDF^, 

which are lighter and smaller than, for example, SF,, 
the intensity-dependent rotational-level bottleneck is 
removed at higher fluences (using standard TEA CO-, 
lasers) than that required for MPD of molecules placed 
in the quasi-continuum. The dynamics of rotational- 
level mixing in a strong infrared field, resonant with a 
vibrational transition, is presently under examination 
[12]. 

The authors [ 131 originally sugested use of rri- 
fluoromethane for viable laser separation of deuterium 
based on its attractive spectroscopic features. The pres- 
ent study verifies that its photochemistry is nearly 
ideal as well. The essential requirement of efficient 
photon utilization [ 143 is satisfied for trifluoromethane, 
provided its low intensity deuterium isotopic selectivi- 
ty in absorption of > 2000 : 1 (10.3 r_l) is maintained 
at high fluence_ CDF, dissociates to DF with a near- 
unity probabiiity at a laser fluence of 180 J/cm? (10.2 
cl), which is reduced six-fold to only 30 J/cm2 when 
suffkient inert buffer gas is added_ Homogeneous hlPD 
in CHF; (yielding HF) is at least lOA times less prob- 
able than in CDF, under identical conditions_ This en- 
sures very high single-step deuterium enrichment fac- 
tors, conservatively 2 1000, since isotopic scrambling 
according to eq. (3) is not important. Note that single- 
step deuterium enrichment factors of 1400 have been 
obtained in MPD of CF;CHCl-, (Freon 123) [ 14]_ For 

a given laser pulse width, the maximum operating pres- 
sure of trifluoromethane in a deuterium separation 
process is limited by the relaxation of laser-excited 
CDF3 by CHF3 ; this is evident from fig_ 5 in which the 
CDF3 decomposition yield is quenched with added 
CHF, at higher pressures_ In addition, at high pressures 
the collisionally-excited CHF, may itself undergo MPD. 
thus decreasing enrichment- 

Redeuteration of trifluoromethane by H/D exchange 
tied to natural gas oi water is essential for large-scale 
deuterium separation [ 14]_ Trifluoromethane under- 
goes D/H exchange in methanol at a rather slow rate of 
3.4 X 10” liter/mole s at 7O”C, proportional to added 
base (sodium methoxide) as catalyst [ 15]_ D/H exchange 
in water with added OH- (base-catalyst) is expected to 
occur at a rate about five fimes faster [I61 ; however, 
hydrolysis may occur at a comparable rate [ 17]_ This 
H/D exchange rate is much slower than for CF3CHC12, 
another very attractive candidate molecule for laser sep- 
aration of deuterium [ 14]_ If the H/D exchange rate of 
trifluoromethnne can be significantly increased by proper 
choice of exchange medium and catalyst, then trIfluoro- 
methane will possess all the properties required for 
viable large-scale laser separation of deuterium. 
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